
VIEW POINT

STRANGLING YOUR MONOLITH
Bypass ‘Big Bang’ Replatforming
with Microservices

External Document © 2021 Infosys Limited

Table of contents

Introduction What every digital enterprise wants

Let’s recap

Signs you’ve outgrown your commerce platform

Bypass the Big Bang with the Strangler Pattern

The benefits of microservices

Monolith vs. microservices: at a glance

Frequently asked questions

What’s the difference between SOA and microservices?

How are microservices different from headless commerce?

Microservices: build or buy?

The Strangler Pattern in action

Case Study

Why no enterprise wants a Big Bang

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

External Document © 2021 Infosys Limited

What every
digital enterprise
wants
Both IT and business teams want
to remove friction and be more agile in
releasing code and bringing new
features to market.

In today’s fast-moving digital world,

closing customer experience gaps, creating

internal efficiencies, and staying ahead of

the market matters.

For many digital enterprises, legacy

technology hinders progress more

than it helps. Years of integrations and

customizations can turn a once best-of-

breed commerce system into a tangled

architecture of half-solutions, patches and

hacks. Developers have come and gone

and documentation is out of date, if it ever

existed at all. Some areas of the platform

haven’t been touched in a decade and

technical debt haunts the whole system.

This makes new feature delivery slow, or

impossible.

Business leaders are under pressure

to innovate, delight customers and hit

revenue targets, while IT must balance new

code delivery with keeping the platform

up and running. Development teams must

INTRODUCTION

be aware and mindful not to compromise

each other’s work — breaking the build

can take days to fix. Every change must go

through extensive regression testing or be

released at a great risk. Releases happen

monthly or quarterly, and in some cases

annually.

Both IT and business teams want to

remove friction in the process and be

more agile in releasing new code and

bringing new features to market. Often,

this means a fresh start — a migration to a

new commerce platform. But experienced

business and IT leaders know ripping and

replacing an enterprise commerce system

isn’t easy,and doesn’t guarantee greener

pastures. Many want to avoid a replatform

project at all costs!

The good news is there’s an alternative

to both the pain of monolithic legacy

architecture and Big Bang replatforming.

Migrating to a modern, modular

architecture that supports more agile

delivery can be achieved with the Strangler

Pattern, a systematic replacement of

monolithic components over time with

microservices. This incremental migration

delivers critical functionality faster with

minimal disruption to existing systems. The

end result is not a new, heavy monolith

that will ultimately suffer the same pains

as the legacy platform, but a flexible and

scalable architecture that supports agility

and innovation.

External Document © 2021 Infosys Limited

You’re pushing your limits

Your business has grown, but success

is slowing down your site and back end

processes. Unacceptable response times or

frequent outages are crippling conversion

rates and revenue. Keeping pace with

growth requires making a copy of your

entire application and investing in more

licenses or hardware to stay performant —

even when increased load applies to only

a single or handful of components within

your platform.

Development is too slow,
costly and risky

Your legacy code has been so heavily

customized over time, any change requires

ample lead time, coordination between

multiple development groups and

potentially introduces bugs that can affect

multiple components. IT spends as much

time testing as developing new code, and

applies more resources to maintenance

than shipping new functionality.

Your TCO is out of control

Like an automobile, an ecommerce

platform can get to the point where it

becomes a money pit to keep running. It

is not uncommon for a mature application

to require more development time in

maintenance than innovation.

Integrations are too
expensive or inefficient

Your platform may do core commerce well,

but hasn’t kept pace with innovation in

the industry. Adding third-party tools like

personalization engines, advanced search

and merchandising, artificial intelligence,

digital experience management or

replacing an ERP system can run six figures

just to integrate, if you can find an efficient

way to integrate them at all. Extending

to new touchpoints like mobile apps,

POS systems, in-store digital or Internet

of Things is either cost prohibitive or too

complex.

You have new business
requirements

Things have changed since your platform

went live. Initiatives to expand to new

markets, adopt new business models,

pursue new revenue-driving strategies

and lead innovation are hamstrung by

your technology. You struggle to extend

commerce to new touchpoints, add

features to meet consumer expectations,

match competitor offerings and embrace

digital experience trends because your

legacy platform was built for the past.

Signs you have
outgrown your
commerce
platform

SECTION 1

External Document © 2021 Infosys Limited

Why no
enterprise wants
a Big Bang

SECTION 2

Replatforming is no trivial endeavor, and
leaving a legacy solution doesn’t always
mean improvement.

Historically, a Big Bang replatforming

project (ripping your existing commerce

application out of service and replacing

a legacy monolith with a new monolith)

has been the only way to escape the pain

of a commerce system that is too costly to

maintain or no longer serves the needs of

the business. But replatforming is no trivial

endeavor, and leaving a legacy solution

doesn’t always mean improvement.

Replatforming an enterprise commerce

platform carries heavy up-front costs,

interrupts the business and poses

significant risk to your timeline and

budget. Legacy systems have typically

been heavily customized over time to

suit your unique requirements. They also

serve as critical systems of record and

are deeply integrated with other key

enterprise systems like ERP, CRM and

DXP (Digital Experience Platforms). These

customizations and integrations need

to be replicated in the new system, and

implementation can take months to years.

During the lengthy development and

implementation phase, any enhancements

to your digital strategy and capabilities

need to be added to both your

existing and replacement systems,

duplicating development and regression

testing efforts. Mid-implementation

updates affect your project scope and

delivery timelines, inflating your costs and

cannibalizing your ROI. To meet deadlines

and budget constraints, lower priority

features may need to be cut or deferred

to post-launch. Missing your deployment

date means supporting your legacy system

longer than you had anticipated, costing

even more money.

After go-live, revenue often takes a hit

as search engines reindex new URLs and

customers reorient themselves to your

new site. Business users have new tools to

learn and IT has a new platform to manage.

The new monolithic platform carries the

same limitations around delivery speed,

scalability and stability as the legacy

application (until the next Big Bang).

Some organizations discover too late

they’ve chosen the wrong platform.

Requirements diligence may not have been

conducted thoroughly enough to uncover

limitations of the platform, or development

and integration issues may only become

apparent during implementation. In some

cases, decision makers’ jobs are on the line

if a project fails, and the organization must

choose another platform or stay on painful

legacy systems even longer.

External Document © 2021 Infosys Limited

Bypass the Big
Bang with the
Strangler Pattern

SECTION 3 Today’s modular approach to software

application design makes it possible

to upgrade ecommerce platforms

without a Big Bang rip-and-replace.

Microservices architecture enables an

incremental approach to replatforming,

where individual capabilities can be

added alongside the legacy system to

override their monolithic counterparts.

Microservices can be added over time to

“strangle” the monolith, until the legacy

platform can be completely retired.

What are microservices?

Microservices are standalone applications

built around a single function or

business process. Each microservice is

independently deployable, uses its own

dedicated database and has a well-defined

API. For example, components like catalog,

search, PIM, promotions, accounts, loyalty,

order management, cart and checkout

can all be decomposed into microservices,

decoupled from each other.

With the Strangler Pattern, microservices

are deployed in an API layer around a

legacy monolith piece by piece, gradually

replacing it over time. An organization

can start with the capabilities that are in

most need of an upgrade, and use their

respective APIs to build new features

and extend to new touchpoints without

introducing risk to the legacy system. The

organization is in control of the process

and pace of migration to ensure minimal

disruption to operations.

DB

MONOLITH MICROSERVICES

Monolithic vs microservices architecture

With the Strangler Pattern, microservices replace the monolith over time

MICROSERVICE

PERSONALIZATION

OMS

USER INFO

External Document © 2021 Infosys Limited

The Strangler Pattern minimizes disruption

to existing operations and user experience,

and allows you to deliver your most

important system upgrades faster. As you

extend your capabilities, your monolith

won’t get bigger or more complex.

Rather than replace one monolith for

another (which over time will ultimately

become as heavy and expensive to

maintain as your existing platform),

transitioning to a modular architecture

lets you take advantage of the efficiency,

stability, scalability and flexibility of

microservices.

Coined by Martin Fowler, the Strangler
Pattern concept is based on the metaphor
of strangler vines. Growing out of the
tops of fig trees, strangler vines work
their way down to take root in the soil
and eventually choke out their host (and
along the way, weave themselves into
some remarkable shapes that are a sight
to behold).

In a digital commerce context, the
Strangler Pattern represents an
alternative to the complex and risky
endeavor of rewriting or ripping-and-
replacing an aging and inflexible legacy
system. Microservices provide the
modularity that allows an enterprise to
gradually build a new system around
the edges of the old over time until the
legacy platform is no longer needed.

External Document © 2021 Infosys Limited

The benefits of microservices

Stability

• Because microservices are decoupled

and store their own data, they can be

independently modified and deployed

without affecting each other or the

monolith, and without a full restart of

the system.

• With monolithic applications, even small

changes can introduce bugs or take a

site down. Finding and fixing issues is

far more difficult with large applications.

You’re working with millions of lines

of tightly coupled code, previous

changes may not have been properly

documented, and developers may have

left or changed projects, taking their

expertise with them.

• With microservices, teams can make

smaller, more frequent updates, which

makes it easier to identify problems

or rollback changes. And if one

microservice slows down or fails, it

doesn’t affect the entire system.

Speed to market and efficiency

• Microservices can be managed by small,

focused teams rather than a centralized

team responsible for multiple areas of

the system. Teams can make decisions

independently without consulting other

groups or worrying how updates may

affect concurrent projects.

• Microservices architecture accelerates

development, testing and deployment.

You can deploy multiple releases per

hour, day or week instead of week,

month, quarter or year. You can respond

more quickly to customer behavior,

competitor moves and industry trends,

and “fail faster.” Innovation carries less

risk — it’s quicker and cheaper to deliver

and simpler to undo if a new tactic

doesn’t pay off.

Scalability

• Scaling a monolith is costly and

inefficient. When a monolith hosted

on-premises needs to scale — even if

only seasonally — investment in more

licenses and hardware is required.

Though the cloud offers the ability to

scale up and down only if and when

necessary, the entire application still

scales as a unit, even if only a single or

handful of components require the

extra bandwidth. Microservices scale

independently.

External Document © 2021 Infosys Limited

Flexibility

• While monolithic platforms may be

“flexible” by virtue their code can be

modified, monolithic architecture is

by nature very rigid. Microservices

architecture supports much more than

just custom development.

• Individual microservices don’t need to

share the same tech stack or database

structure as your monolith or each

other to play nicely. They can simply

“talk” to each other through your API

orchestration layer. Microservices can

also be swapped-in and swapped-out

over time to keep your environment up

to date with best-of-breed technologies.

• Modularity helps you extend

functionality to new touchpoints

efficiently. Rather than hardwiring new

touchpoints to your monolith, you

can work with only the microservices

needed for each use case and

context. For example, an AI-driven

chatbot application may only need

to call customer accounts and order

management, but not catalog, PIM,

search, promotions, cart or checkout. Or,

visual or voice search in your mobile app

may only need to talk to your catalog.

• Microservices can run in parallel –

something not possible with a monolith.

For example, you may want to run two

versions of your checkout microservice:

one for your domestic and one for

your internationalized site. Each can

take advantage of optimized forms,

currency conversion, payment options,

tax and shipping rules while scaling

independently. Or, your B2B portal may

share catalog, PIM, promotions and

cart with your B2C offering, but have

its own account, order management

and checkout modules. Parallel

microservices allow you to keep your

code clean between services and

customize integrations.

• Running microservices in parallel also

allows you to run more complex A/B

Monolith vs microservices: at a glance

tests than a monolith, which doesn’t

support running two sets of code within

it. For example, you may wish to test

two search engines, each with their own

algorithmic tuning. Test code can be

deployed and rolled back independently

of the monolith.

Monolithic Architecture Microservices Architecture

Each application in a monolithic
architecture operates in relation
to the other applications in the
architecture.

Subsequent enhancements are
expensive and labor-intensive.

Components of a monolith share
a common technology stack and
database schema.

New touchpoints must be
hardwired to the monolith.
They can’t leverage only the
components they need to access.

Customizing software is
significantly riskier. A change to
one area can impact many other
areas (e.g. by introducing a bug
or degrading performance) and
requires full regression testing
across the entire application.

Monoliths can only scale as a
whole.

Can only be extended to limited
degree with APIs and is often
vendor-dependent.

Monolithic architecture doesn’t
support multiple versions of a
service.

Each microservice is an app unto
itself with its own API and well-
defined functionality, and can
be deployed and function as a
standalone entity.

Enhancements can be deployed
quickly and cost-effectively.

Developers can choose the
programming languages and
database structures that suit each
microservice best.

Microservices can be extended to
new touchpoints independently.

Enhancing an existing
microservice or deploying a new
one doesn’t disrupt other services
or existing application functions.
Testing and rollback are much
faster.

Microservices can scale
independently of each other.

Unlimited potential to extend via
new microservices and APIs.

Microservices can be run in
parallel to satisfy specific business
requirements or A/B testing.

External Document © 2021 Infosys Limited

The Strangler
Pattern in action

SECTION 4

Case study

One of the largest mobile carriers in the

world, that serves more than 81 million

customers in the US alone, including over

a million corporate mobility accounts

through its Business division, needed to

build an online B2B2C portal to enable

employees to manage their devices and

plans, and purchase service upgrades

such as travel packs and other add-ons

independently. Before this portal, B2B

customers relied on intermediary agencies

to handle such requests and liaise with the

enterprise on their behalf.

This highly specialized and complex

functionality was initially built on top of

enterprise’s IBM WebSphere Commerce

application. The portal drives between $12-

$13B in online revenue, thus was critical to

replicate when it came time to modernize

their technology and migrate away from

their monolith towards microservices

architecture.

This enterprise chose to apply the Strangler

Pattern’s phased approach to migration

to leverage ready-to-use microservices

quickly (such as Catalog, Pricing,

Merchandising, B2B Accounts, Search and

Promotions), while custom microservices

were developed to support the portal.

External Document © 2021 Infosys Limited

Tailor-made microservices

The mobile carrier enterprise used

Infosys Equinox’ foundational framework

and Infosys Public Services as their

implementation partner to build the

microservices needed to support the

portal.

Custom APIs were also designed to handle

enterprise’s complex cart and checkout

requirements. Mobility transactions

typically involve a bundle of devices,

subscription plans, accessories and add-

ons. What’s more, B2B checkouts must

interface with a range of backend systems

and data sources and support invoicing,

B2B payments and taxation.

In parallel, remaining ancillary capabilities

from WebSphere can be built using the

same stack and documentation as the core

microservices. Once the cart and checkout

microservices are deployed, the enterprise

will be able to complete the strangle and

let go of their legacy system entirely.

Unified deployment

This enterprise deployed their new

microservices platform to their existing

AWS private cloud, including the entire

Infosys Equinox turnkey framework and

DevOps pipeline. Because the framework

is built with open-source components and

disposable architecture, this enterprise

was able to swap out the technologies

it preferred without disrupting other

components. For example, it was able to

replace Docker containers with serverless

Lambda functions.

Because enterprise’s both core and custom-

built microservices are deployed in the

same environment, the entire system can

be monitored through unified dashboards.

Custom functionality can be chained for

Admin and business tooling through a

single orchestration layer, and any new

services can seamlessly integrate with the

existing system as the business continues

to evolve.

Project highlights

• Gaining access to new functionality far

faster than a monolithic “Big Bang,” they

were able to develop new modules in a

matter of months

• Implementing micro services, led to

over 50% reduction in timeline and

cost (versus a from-scratch refactor)

• End-to-end Strangler migration timeline

of 12-18 months

External Document © 2021 Infosys Limited

What’s the difference
between SOA and
microservices?

Both SOA (service oriented architecture)

and microservices architecture are

alternatives to monolithic architecture

that leverage smaller, more manageable

applications that are scalable and can be

swapped-out for best-of-breed capabilities.

But microservices architecture is not to be

confused with SOA.

SOA architecture relies on a central

Enterprise Service Bus (ESB) to relay

messages between services. The ESB is a

Frequently asked
questions

SECTION 5

“smart pipe” that contains all the business

logic for all services across the network,

thus code becomes tightly coupled within

the ESB. Changes to any service (endpoint)

requires an update to the ESB, which in

turn affects any or all other connected

services. Over time, the ESB can become as

bogged down with spaghetti code as any

monolith.

As with monolithic architecture, if one

service fails or slows down, the entire ESB

can get hammered by requests for that

service, affecting performance across

the entire system (and negatively impact

customer experience).

In contrast, microservices are “smart

endpoints.” Microservices contain their

own code, rather than code living in the

ESB. Development teams can work on

projects independently of other teams

and deploy code faster without disrupting

other services. Microservices have less

dependencies than SOA, and therefore

fewer failure points.

DB
ENTERPRISE SERVICE BUS (ESB)

DESKTOP

SERVICES ERVICE SERVICES ERVICE SERVICE

MOBILE NEW
TOUCHPOINT

Services Oriented Architecture

External Document © 2021 Infosys Limited

How are microservices
different from headless
commerce?

“Headless commerce” decouples the

presentation layer from the rest of a

monolith’s commerce components to allow

best-of-breed Web Content Management

(WCM) or Digital Experience platforms

(DXP) to power the front end. Business

logic and data remain in the monolith, and

code remains tightly coupled.

Headless commerce certainly offers more

flexibility than a monolith and is a step

towards omni-touchpoint, “commerce

everywhere.” In addition to WCM and DXP,

external touchpoints like mobile apps,

interactive lookbooks, in-store kiosks and

wearable devices can serve as a “head” and

access the monolith through APIs.

While “heads” contain their own

presentation logic, they’re limited to

the monolith’s business and data logic.

Headless commerce with a monolith vs microservices

Modifying the monolith to satisfy the

requirements of a new endpoint impacts

all aspects of the monolith, including other

wired heads. This can limit innovation

because the business value of a new

endpoint must justify the effort and risk of

updating and regression testing the entire

system.

With headless commerce, endpoints can’t

scale independently and increase the load

on the monolith even if they access only a

single service, forcing the entire platform

to scale. With an omni-touchpoint strategy,

a handful of small endpoints may increase

license and hosting costs exponentially.

MONOLITH

CMS/HEAD

WEB MOBILE NEW
TOUCHPOINT

NEW
TOUCHPOINT

NEW
TOUCHPOINT

CMS/HEAD

WEB MOBILE NEW
TOUCHPOINT

External Document © 2021 Infosys Limited

Microservices: build or buy?

Generally, as with any software build or

buy decision, build gives you greater

control and choice of programming

languages, features and structure of your

microservices, while buy gets you to

market faster.

When migrating to microservices

architecture, you can also employ a

combination of both build and buy,

depending on your resources, timeline and

business needs.

Refactoring your existing
monolith

Extracting and refactoring existing

monolithic code into microservices is

not without its challenges. While reusing

code can be faster than from-scratch

rewrites, undoing existing dependencies

can become very time consuming, and

you may need to copy and modify code

extensively for areas where dependencies

are “too big to bring along.” You’ll likely

need to refactor data structures, which

adds complexity to your project.

From-scratch rewrites

Depending on the age, size and complexity

of your existing monolith, building new

greenfield microservices may be faster than

working through code dependencies and

data structures. It also allows you to select

the “best tools for the job” with respect

to programming languages, databases

and features that best reflect today’s

(and tomorrow’s) business requirements.

However, from-scratch rewrites delay time-

to-market and may require you to hire

new developers skilled in these languages,

rather than leverage resources familiar with

the monolith’s stack.

Allowing smaller, independent

development teams to build their own

microservices can also be problematic if

the overall strategy is not overseen by an

experienced software architect. The end

result can be a

mish-mash of languages, frameworks,

data structures and lack of consistent

documentation, with unnecessary

redundancies between microservices.

Setting up your microservices
environment

Whether you refactor or rewrite, you’ll

need to build an API layer, messaging

system and business tools in addition to

your microservices, all while concurrently

maintaining your live monolith. If

you choose to build, expect to spend

approximately 50% of your effort keeping

your live system running and 50% on

setting up your microservices environment

in your initial stages.

Both in-house development options

(refactoring and from-scratch rewrites)

carry a learning curve and extend time-to-

market significantly. Leveraging third-

party, prebuilt microservices can help

you hit the ground running much faster,

especially when they ship with ready-to-go

business tools, API and messaging layer.

Choosing flexible microservices built on a

similar stack to your monolith allows you

to leverage existing developer talent and

customize to suit your business needs.

External Document © 2021 Infosys Limited

How should we approach
strangling our monolith?

The Strangler Pattern offers you flexibility

and control over your migration roadmap

and allows you to prioritize which

modules you migrate first. Ideally, you

will begin with components that are

most constrained by your monolithic

architecture.

For example, services that have an

immediate need to scale, or that benefit

most from frequent updates and

continuous delivery. Or, new innovative

experiences that aren’t worth baking into

your current platform.

However, business value should not be

your only consideration. How you tackle

migrating to microservices architecture

depends on your monolith’s structure,

business pain points and IT strategy.

Your plan should balance migration

with minimizing disruption to existing

operations. If you’re extracting and

refactoring services in-house, ensure

you’ve conducted a full discovery of

dependencies and allow some wiggle

room for unforeseen dependencies to pop

up during development.

Remember, you need an environment

for your new microservices to live in and

communicate with each other. If you’re

building microservices completely in-

house, you’ll need to build your API layer

and messaging system first. If you use

third-party microservices, you can leverage

this infrastructure out of the gate and use it

for your own builds as well.

Don’t forget business tools! The goal of

microservices is to foster IT agility, not

create more organizational dependence

on IT for everyday administration. A

microservices vendor with out-of-the-box

business tooling accelerates your project

and lightens the IT burden over time. A

vendor that enables you to customize your

business tooling to suit your requirements

and workflows is even better.

Upgrading digital commerce technology
no longer requires a Big Bang replatform
from one heavy monolithic system to
another. Using the Strangler Pattern,
an enterprise can systematically
migrate components of the monolith to
microservices, with minimal disruption
to existing systems during the transition.
The end result is a more modular and
flexible architecture.

Let’s recap
SECTION 6 1 Microservices are loosely coupled,

independently deployable, have their

own databases and communicate

through lightweight APIs. Smaller

developer teams can own delivery end-

to-end without needing to know the

ins and outs of the entire monolithic

application or co-ordinate with other

teams. New code can be delivered

faster without extensive regression

testing or risk to other parts of the

system.

2 Unlike monolithic systems which

require the entire application to scale

– even if only one component is hitting

its limits, microservices can scale

independently, providing efficient use

of hardware and bandwidth.

3 Microservices don’t need to share

the same tech stack, code base or

database structure as your monolith

or each other, and can be individually

replaced over time if needed. They

can also be independently integrated

with other applications and consumer

touchpoints, leveraging only the

required components, rather than

hardwired to the entire platform.

4 Microservices can be run in parallel,

allowing the flexibility to suit unique

use cases for internationalization, B2B/

B2C, A/B testing and more.

5 The Strangler Pattern allows you

to focus your initial effort on the

components causing the most pain.

Choose components that have

immediate need to scale, would

benefit most from frequent updates

and delivery, or services that could be

leveraged for innovation projects.

6 To communicate with your monolith

and each other, your microservices

need an API layer and messaging

system. Leveraging third-party

microservices can help you get to

market faster. To avoid creating IT

dependencies for routine tasks and

streamline efforts to code delivery,

ensure your microservices include

user-friendly business tools.

About
Infosys Equinox

Infosys Equinox is a digital commerce
platform driving human-centric and
memorable omnichannel shopping
experiences.

For more information and a product demo,
please reach out to us at
contactus@infosysequinox.com

© 2021 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Stay ConnectedInfosys.com | NYSE: INFY

mailto:contactus%40infosysequinox.com?subject=
mailto:askus%40infosys.com?subject=
http://Infosys.com
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/infosys

